

COMBINED STRENGTH. UNSURPASSED INNOVATION

SEPTEMBER 23-26

ANAHEIM, CA, USA

2019

Geoffrey E. Clarkson, P.Eng.

Chief Technical Officer, UTComp, Inc.

The Product

- Glass-reinforced thermoplastic rail ties
 - Recycled polymer
 - Glass fiber reinforcement
 - Closed mold production
- Intended as full replacement for wood crossties

Wood Crossties

- Most railway crossties
- Treated with preservatives
- Tree trunk >330mm (13") dia.

Performance Requirements

- Dimensions
- Dimensional stability
- Modulus of ElasticityModulus of Rupture

Destructive

Modulus

• 3-point Bend Test

Proxies for Performance

- Wood ties:
 - Dry rot,
 - End splits,
 - Poor creosote retention.

- Polymer Composite ties:
 - Weight (density),
 - Feedstock records for glass and polymer,
 - Process control documentation.

Tie Construction

Think of it like a box-beam

 Higher strength material in outer ligaments

Additional requirement

• Find 12mm (1/2") void or defect in the tie

Early shop test

X-ray

Location uncertain Material variation Porosity?

Early testing

- Ultrasound
- Voids and porosity can be detected

Lab testing

Target created

Lab Test

- Computer control
- Pull frame along tie
- Find Hole

Along the path

Automation Prototype

- 100% coverage of tie
- 20mm per minute
- 100% automated
- Uses off-the-shelf ultrasonic hardware with in-house computer control

Typical Results

Visual Display:

Local Assessment: "Go" or "No Go"

Other Results

Consider Weighted Value (W):

$$W = \sum_{i=A}^{E} Value_i(Distance\ from\ C\ to\ Reading_i)^2$$

Performance Prediction

Conclusions

- 1. Detection of 12mm voids or large porosity.
- 2. 100% inspection of 3 m. rail tie in 150 seconds.
- 3. Performance prediction is possible.

