

Non-intrusive, Non-destructive FRP Inspection

Geoff Clarkson UTComp Inc How to effectively inspect FRP for mechanical integrity (MI) and Fitness for Service (FFS)?

Definitions:

Non-destructive: Measurements are made without causing any damage to the material inspected.

Non-intrusive: Measurements are made while the pressure

boundary is intact.

NO confined space entry

Possibly in operation

FRP Construction

Outer Surface (Non-process Side)

Corrosion Barrier serves to protect the structural layers from process conditions

Owner Preferences

- Fitness for Service can be defined by:
 - Corrosion Barrier condition
 - Structural Capacity
- Mechanical Integrity:
 - Certification of Fitness for Service

FRP Construction & Quality Control

Resin

- Validation of chemical resistance using ASTM C581to the following:
 - Hardness changes
 - Weight loss
 - Flexural modulus change
- Corrosion Barrier
 - Detection and repair of visible defects
 - Resin Cure
- Structural Layers
 - Detection and repair of visible defects
 - Destructive testing and resin cure

FRP Damage & Failure

Guidance from Codes and Standards

Piping Inspection

- API Refers to FRP.
 - · Some damage mechanisms discussed.
 - Few recommendations for detection and measurement.
 - No discussion of Condition Monitoring
- Extensive detail for Condition Monitoring of metal piping.

Vessel Inspection

- No reference to FRP in API, ASME, ASTM.
- New document available for Swedish Flue Gas Equipment.
- TAPPI TIP 0402–28 includes some destructive methods
- Intrusive Inspection is the NORM

In-service Inspection Challenges

- Relationship of design and construction details to in-service inspection requirements.
 - What is the "Corrosion Allowance"? How determined? Where provided?
 - Where does Inspector obtain criteria for acceptance or repair?
 - Acceptable depth of damage to Corrosion Barrier?
- Risk of failure with damaged corrosion barrier?
- What measurements can be taken to show extent of damage and calculate Remaining Service Life?
- Same results with different inspectors?

Inspection of In-service FRP Equipment

- Detect and measure damage development as part of Mechanical Integrity or Fitness for Service (FFS).
 - Allow proactive repair or replacement decisions.
 - Provide information so that the rate of change can be calculated.

Possible Non-Intrusive Techniques

- Advanced Ultrasound
- Infra-Red Thermography
- Visual External
- Acousto-Ultrasonic Testing
- Acoustic Emission
- Micro-wave
- This presentation will focus on Advanced Ultrasound.

Advanced Ultrasound

- Uses conventional ultrasonic flaw detector and transducer.
- Required Post-Processing of Data
- Results provide:
 - Thickness Range,
 - Current Flexural Modulus,
 - Damage Depth to Corrosion Barrier

Advanced Ultrasonic Method

- Samples provided by users.
- 2. Visual information from corrosion barrier to simulate intrusive inspection.
 - a. Include surface hardness
- 3. Evaluation of cut edge for depth of damage.
- 4. Ultrasonic readings from outer surface to simulate non-intrusive inspection.
- 5. Destructive testing of flexural modulus to confirm value from ultrasound.

- ▶ SO₂ service
- Discolouration
- Cracks in surface
- No blistering evident
- Hardness: 41

- From outer surface
- Damage depth from N-I: 0mm
- Damage depth from section 0mm
- Intermediate detected
- Flexural Modulus: 41% of theor.

Intrusive

- Weak HCl
- Temp ~100°C
- External Pressure
- Cracking and separation
- Hardness: 35

- Damage depth: 3.4mm
- Flexural Modulus: 44%

Intrusive

- SO₂ and solids
- Temp ~100°C
- External Pressure
- Heavy scale
- Hardness: 13

- Damage depth: 1.7mm
- Blisters at 4mm
- Flexural Modulus: 41%

Intrusive

- CO & CO₂
- Temp ~75°C
- External Pressure
- No Scale
- Hardness: 25

- Damage depth: 1.5mm
- Flexural Modulus: 96%

Intrusive

- Chlorine dioxide and pulp
- ▶ Temp ~75°C
- Hardness: 6

- Damage depth: 1mm
- Flexural Modulus: 44%

Intrusive

Sometimes Intrusion is Required

- Flat bottoms of tanks
- Nozzle seal bonds
- Process reactors

In many cases, damage detected by non-intrusive methods can guide when intrusion is required.

Summary

- Advanced Ultrasonic methods can provide non-intrusive assessment of both corrosion barrier condition and structural capacity.
- Final assessment and/or internal structures may require intrusive inspection.
- Inconsistent relationship of hardness with corrosion barrier condition.
- Change in flexural modulus can be used to guide when remediation should be considered.

Questions?

Geoff Clarkson

519-620-0772 g.clarkson@utcomp.ca

The good thing about science is that it is true whether you believe it or not.

Neil deGrasse Tyson