

# SUITABILITY FOR SERVICE OF FRP

Geoffrey E. Clarkson, P.Eng. UTComp Inc. Cambridge, Ontario, Canada

The FRP Reliability Experts

### **Fibreglass Reinforced Plastics**

- Used widely in corrosion applications
- Tanks, Pipe, Scrubbers, etc.
- Corrosion Resistant
- Used for: Chlorine compounds, acids, wastewater, etc
- Key Ingredients: Engineering; Resin/Matrix, Reinforcement (glass); Shop Methods



#### **Corrosion Barrier Life Cycle Inspection**



**New Equipment** 

#### **Corrosion Barrier Life Cycle Inspection**

In-service Equipment



#### **Corrosion Barrier Life Cycle Inspection**

Next....





## **Corrosion Barrier Life Cycle History**



#### In the extreme.....

- Vessel had Corrosion
  Barrier inspections
  annually for 13 years
- Failure of structural laminate was at structural repairs made when new
- Not detectable from internal or external visual inspections.



#### **Corrosion Barrier Life Cycle Results**

#### In our experience.....

- Little direct relationship between condition of corrosion barrier or outer surface and FRP structural condition.
- Condition of CB can be misleading about condition of the FRP as a whole

## "Can we generate a curve to allow us to plan repair & replacement of FRP vessels as for metal vessels?"

#### **Steel Process Vessel Shell Thickness**



## **Suitability for Service Calculations**

#### Metals:

- Corrosion causes material loss.
- Thickness (t) reduces.
- Elastic modulus and strength remain constant.

- Mathematically:
  - t × Material Strength ≥ (Maximum Load )/ width
  - Or t × Strength ≥ Constant

## **Suitability for Service Calculations**

- FRP
  - Loss of strength has been observed.
  - Thickness is generally constant.

- Mathematically:
  - t × Material Strength ≥ (Maximum Load )/ width
  - Or t × Strength ≥ Constant

## **FRP Strength Change**

 Destructive Test Results for the same tank as Corrosion Barrier history earlier



### **FRP Service History**



#### **Parameters**

#### Critical PDS:

- Minimum allowable value of PDS for equipment operation.
- Intent to set where the actual current Design Factor=2
- For new Design Factor=10, Critical PDS=20%
- For new Design Factor =6, Critical PDS=33%
- For new Design Factor=5, Critical PDS = 40%
- 2. Half Life PDS (PDS $_{50}$ )
  - Value of PDS at 50% of FRP lifespan to Critical PDS.
- 3. Engineering Review Recommended
  - To determine whether parameters are still valid.
  - Triggers at about ¾ of the calculated lifetime.

### **FRP Suitability for Service Curve**



#### **FRP Strength Determination**

- Must be:
  - Repeatable
  - Verifiable
  - Non Destructive
- Rocket Science
  - 1960's: NASA starts investigating ultrasonic testing (UT) for flaw detection in composite aircraft parts
  - Also detected changes in strength using ultrasonic testing
  - Further work has produced a system that meets the criteria

#### **Destructive vs. Non Destructive Results**



## **Applications**

- Can be used for:
  - Vessels, Tanks, Scrubbers
  - Duct
  - Pipelines
- Principles of API 653 are generally applied.



## **Application**

#### Tank with repair



## **Application**

#### Wet Chlorine Gas Headers

#### Remaining Service Life Header A & B 24"



#### **Conclusions**

Non Destructive Strength data for FRP can be used for Suitability for Service and Remaining Service Life reporting.

## **Questions?**



